
An Innovative Approach to Processing and Converting Environmental Data

William W. Ferrell
Warren Macchi

Anthony A. Barresi
Abamis IT Solutions

Orlando, FL
wferrell@abamis.com, wmacchi@abamis.com, abarresi@abamis.com

Farid Mamaghani
SEDRIS Organization

farid@sedris.org

Keywords:
SEDRIS, GIS, data conversion, environmental data, templates, data models, mappings

ABSTRACT: A common task in the preparation, modeling, consumption, and interchange of environmental data is
converting the data from a particular format and/or representation into another. It is not uncommon that during such
conversions useful information is lost, needed metadata dropped, precision is reduced, and/or artifacts that were not
present in the original data are introduced. This paper describes an approach to environmental data conversion that
uses SEDRIS to manage these issues and to aid in the mapping between different environmental data models. Being
able to describe the source and destination data models using a common terminology and representation allows for
faster, more efficient, and reusable development processes. The approach described in this paper uses SEDRIS
technologies, including the Data Representation Model (DRM), XML-based Transmittal Content Requirements
Specification (XTCRS), Environmental Data Coding Specification (EDCS), Spatial Reference Model (SRM), and a
novel template-based description of environmental data processing algorithms, to process and convert the data that is
available in widely used formats from one representation into another.

1. Introduction

Processing environmental data is a key component of
current simulation applications. Without trusted and
reliable sources of data and accurate processing of it, a
simulation may lose its credibility, and its use may
become severely limited. It is therefore vital that the
processing of environmental data from its source to a
simulation’s components be clearly understood. This
paper addresses some of the key issues that are
encountered by systems engineers and software
developers in the modeling and processing of
environmental data.

A common (but not always appropriate) first
consideration in processing environmental data is the file
format of the data. These file formats impose constraints
and requirements on the development of the processing
software. These impositions are not always immediately
obvious. To illustrate this, consider the Digital Terrain
Elevation Data (DTED) format [1], which is used for
storing terrain surface elevation data. The data models of
the different software libraries that can read this format
are often quite different. Hence, the software developer
will be required to either restrict the software design to
use the reader’s data model or develop mappings from the
reader’s data model to the application’s internal data
model. In either case, later when a different source of

elevation data is required (for example, one using the
Geospatial Tagged Image File Format (GeoTIFF) [2], the
application’s design will require additional (sometimes
major) modifications to handle the new data source.

In addition to the data model of a software library used to
read a particular format, the software developer must also
consider the data models used in components that need to
process the environmental data. For example, consider a
software component, developed by a third party, which
triangulates multi-sided polygons. The data model used in
the simulation application will most likely be different
than the data model used by the third-party library.
Hence, the developer is forced, once again, to map
from/to internal data structures to/from the third-party
library’s data structures. Furthermore, if a developer is at
some point required to replace this library with another
library’s implementation, the task of re-creating the data
model mapping software will need to be repeated.

These challenges, and practical solutions to them, are
discussed in the remainder of this paper through the
perspective of software developers and systems engineers.
Section 2 describes these challenges in greater detail and
discusses various choices for addressing them, along with
some of the implications of those choices. It also provides
a summary of the SEDRIS components and an approach
to address these challenges. Section 3, the central focus of

this paper, discusses the application of SEDRIS and
supporting technologies in a unified approach to the
processing and conversion of environmental data. Section
4 concludes the paper with a summary of the results of the
work to date and a discussion of future work in this area.

2. Environmental Data Challenges

Simulations use a wide variety of data sources to perform
their intended functions. Many of the challenges that arise
in the processing of environmental data are not unique to
the simulation field. Software developers who need to
read, write, and process environmental data can encounter
a variety of unanticipated challenges, including the
following:

• Data might be stored in several databases,
possibly in multiple formats.

• Data might contain customized or extended data
structures that are not fully documented.

• Data might contain far more data (whether in its
detail or geographic coverage) than the
simulation or the processing application can
reasonably handle (processing time and/or
memory constraints).

• Data might be represented or organized in a way
that cannot be used directly.

• Data might require conversion into an optimized
representation for space or performance reasons.

• Simulation’s and/or the processing application’s
data models might need to be mapped to/from
other data models so that data can be processed
by third-party libraries.

To address these challenges, a software developer must
make design decisions across the data processing pipeline.
These decisions have a direct impact on the flexibility,
modularity, expandability, reliability, and performance
characteristics of the data processing applications. Hence,
a thorough understanding of the impact of the decisions is
a key step towards developing trusted and reliable
applications and simulation systems.

Unfortunately, since sometimes file formats are
erroneously the first but, nevertheless, an important,
consideration in processing environmental data, we focus
first on those.

2.1 File Formats

File formats are usually divided into two general types:
text and binary encodings. In text files, the data is stored
using human-readable characters. Most files using a text
encoding can be examined using common text editors
(such as vi, Notepad, or TextEdit).

An eXtensible Markup Language (XML) document is an
example of a text file, but one that follows a very specific
set of rules regarding its content organization and
structure [3]. In an XML file the information is provided
using markup and content. An example of an XML
document is <name>Sienna</name>, where <name> is a
start tag, Sienna is the content, and </name> is an end tag.
In XML syntax, the entire string, which includes the tags
and content, is referred to, in this case, as the name
element. XML elements may contain other XML
elements.

Note that without additional context it is not clear what
the "name" element is actually representing. Is it a
person's name, the name of car models, a material name
or something else? This is because the XML syntax
specification is simply a way to delineate information in a
text presentation. One needs additional information to
interpret the semantics of that information. Hence,
without an associated schema for its interpretation, an
XML file by itself is not necessarily understandable just
because it is a text file. Some examples of environmental
data file formats utilizing XML are the Geography
Markup Language (GML) [4] and the COLLAborative
Design Activity (COLLADA) Digital Asset and
Exchange Schema [5].

In addition to common text editors being able to read and
write text files, specialized parsers have been developed
for specially formatted text files (including XML) that are
widely available. Unfortunately, in the absence of editors,
it is very difficult to use general-purpose editors to create
large data sets, and files can easily become corrupted.
Another disadvantage of text files is that they tend to be
quite verbose, and therefore moderate to large datasets
typically require significantly larger computing resources
(e.g.,, storage, memory and processor cycles) than binary
encodings of the same dataset.

A binary encoding is another way of storing data in a file
(in fact, technically even text files are stored as “binary
data”). A binary file format generally refers to byte
streams that are not based on text encoding. One reason
for using non-text files is the efficient and more natural
way data can be represented in computer memory. For
example, the integer value "59287" is not typically stored
as five text characters in memory. Rather, it is stored as a
group of bytes, such as the hexadecimal value E797
(where, in fact, the two bytes E7 and 97 represent the
decimal values of 231 and 151, respectively). Another
example is storage and representation of floating point
numbers, such as "84103.109375", which is stored in four
bytes as the hexadecimal value 47A4438E rather than
twelve text characters. Because programmers develop
software by manipulating data structures in computer
memory, it is easier to store the data in memory directly

in a file (since files are also a linear sequence of bytes).
Then, to restore a program's state, all that is required is to
read the data in the file directly into memory. This is
faster and more efficient.

Binary encodings are generally used when compactness
of the representation and efficiency of data access are the
primary concerns. Some drawbacks of binary encodings
include the need for specialized libraries to access the
data stream; the need for specialized “editors” to
manipulate or edit the data; and the difficulty in making
changes to the file format. A change to a binary format
may often require changes to the parser software in the
file format library to account for the different organization
of the byte stream.

Examples of binary file formats are OpenFlight (Presagis
Inc.) [6], Shapefile [7], and the SEDRIS Transmittal
Format (STF) [8]. Note that some file formats require
more than one file to store all the data. For example, a
Shapefile is typically composed of at least a file ending
with a “.shp” extension containing the geometry
information, one ending in “.dbf” containing the field
attributes of each geometry/shape, and one ending in
“.shx” that contains an indexing of the “.shp” file for
faster access to its contents.

Because of the efficiency of a binary encoding, simulation
systems sometimes use a custom file format called a
“runtime format” or “runtime database.” The content of
these runtime databases is a distilled, highly tailored, and
customized version of the data. Such specialized data sets
are generally not reusable across disparate systems, since
their binary format is specific to the architecture and data
requirements of a particular (hardware and/or software)
simulation system.

2.2 File Format Libraries

In order to access the data, developers generally use a
software library that provides the appropriate read/write
interfaces to the desired file format. Developers may use
existing library implementations (either made available by
the providers of the format, or through commercial or
open source providers), or may choose to implement their
own access software (because existing implementations
may be incomplete, not in a specific programming
language, or have licensing restrictions). In either case,
several important issues in utilizing a library
implementation must be considered. In the remainder of
this section, the term "library" refers to any software
library used in reading and writing a particular file format.

The first consideration in choosing a library is the
programming language used for the interface and the
implementation of the library. The interface provided by a
library might not be in the same language used in its

implementation. Obviously, if the interface to the library
is in a different language than what the developer uses,
additional work to bridge the application and the library
will be required. In addition, the language in which the
library is implemented will affect how easy it is to
integrate the library with the developer's software. Having
access to the library's source code generally can speed up
the software integration and testing processes.

Memory requirements and efficiency of data access are
other key considerations. Some libraries may need to load
all or large parts of the data stream before data can be
accessed. With such libraries and when large
environmental data sets are being processed, the memory
and storage requirements may exceed the available
system or application resources. Speed of data access is
also an important consideration for large data sets.
Libraries and file formats that are not properly designed
for handling large data sets may require significant
computing resources to access the data even when only
small sections of the data need to be read or updated. For
example, some file format libraries load all the source
data into memory as soon as the (file) stream is opened. If
the data covers a much larger area (or has additional
information/layers) than the application needs, then
memory and processing time is wasted loading data that
will not be used. Hence, a file format library should either
allow the developer to drive the data loading process
(based on the application’s requirements) and/or provide
filtering mechanisms or other methods for specifying
areas of interest.

In addition to efficiency, a well-designed library should
also provide a flexible and robust implementation.
Typical processing actions should be intuitive and
straightforward for the developer to implement, but the
interface should also provide mechanisms for adapting the
data access to follow the pattern most suitable to the
developer; for example, by providing querying, data
filtering, and other processing options. The library
implementation should also be robust and gracefully
handle various conditions, including corruption or
interruption problems in the data stream, problems that
the developer's software may encounter (e.g., by
providing useful information in error conditions), and
problems with the computing environment where the
library is being used (e.g., freeing/releasing all resources
when the stream is closed). Such a library encourages and
allows the developer to try different approaches for data
access that might be more appropriate and/or convenient
to implement.

Another important consideration is the availability of
support for a library. While clear, concise, and well-
written documentation is a key element in understanding
the use of a library, the availability of example code and a

responsive community is also invaluable. Sample
applications that show the developer how best to use a
library are extremely useful in getting a project started.
When additional questions arise, having support from
either the developers of the library or from a community
of users can mean the difference between rapid
development cycles or days of frustration.

2.3 Data Models

File format libraries often provide an Application
Program Interface (API) that the developer uses to access
the environmental data stream. These APIs generally
consist of a set of software data structures and
functions/methods that expose a (logical) data model of
the format. Because these APIs are generally not
standardized, different libraries for the same format are
rarely interchangeable. Hence, the effort spent in learning
one implementation’s API (its strengths, weaknesses, and
data model) is generally not applicable to another library
implementation for the same format.

In addition, the simulation system and/or the application
that handles the data access for the simulation has its own
data model and internal APIs used to process the system’s
data. Because the requirements for a file format library
and the requirements for the simulation/application are
usually very different, their respective data models will
likely be quite different also. Hence, the developer must
spend time learning about each library’s API and writing
software to map from/to its data model to/from the
application’s (or simulation system’s) data model. The
development of reliable and efficient software for the
mapping of these data models is not a trivial task and can
consume a large part of the software development effort.
Mistakes made in this part of the development can lead to
performance implications across the length of the
environmental data processing pipeline. Some of the
challenges that a developer will face when learning about
environmental data models include the following:

• Multiple types of data (e.g., raster, geometry,
features)

• Multiple representations for the same type of
data (e.g., contours, grids, and polygons for
surface elevations)

• Efficiency of data structures (e.g., being able to
access slices of a large elevation data set)

• Spatial reference frames (e.g., representing
position information in different reference
frames and conversion of coordinate values
between them)

• Object classification and attribution schemes
(e.g., EDCS [9], National System for Geospatial-
Intelligence (NSG) Feature Data Dictionary
(NFDD) [10]).

• Associations and linkages between
environmental entities (e.g., relationships
between shoreline and tidal state).

• Extensibility (e.g., handling new objects, object
attributes, object representations).

It is clear that systems engineers and software developers
are faced with a variety of sometimes daunting learning
tasks. Therefore, reducing the number of data models (and
the associated approaches and terminologies) a developer
must learn will reduce the complexity of the development
task. The above list also highlights the necessity of having
clear and consistent documentation for the different data
models that will be utilized. The use of standardized data
models can help in this matter by providing the developer
with knowledge, expertise, and consistent approaches that
are reusable across different applications and designs.

2.4 Data Manipulation/Reformatting

In most applications the required environmental data will
be retrieved, refined, and assembled from multiple data
sources, file formats, environmental domains, and spatial
coverage. Hence, the applications and tools throughout
the pipeline must process the data to create an
amalgamated and coherent view of the spatial area for the
simulation exercise.

As noted earlier, one of the first steps in preparation for
the processing of environmental data is to map the
external data model(s) to the internal data model. The
challenges that may occur in this stage range from
converting simple data type and unit conversions to
highly incompatible data models. For example, the source
data model might provide the surface elevation as a
regular grid of 32-bit integer values in feet and using an
offset and a scale factor for each grid point. But the
internal data model requires the elevation to be
represented using a regular grid of floating point values in
meters. In this case, a relatively simple conversion step
can provide the mapping. However, if the source data
model represents the elevation surface as polygons and
includes underground structures (such as tunnels), the
mapping would require more complex considerations.

Besides the mapping between external and internal data
models, other common operations include processing and
querying the environmental data. For complex data
processing needs, developers sometimes use software
libraries developed by a third party. For example,
triangulation of polygons is a common operation that is
not trivial in the general case. Therefore, a developer may
utilize an external library that performs this function and
integrate the library with the system. This integration step
is similar to what the developer must do to map a file
format library’s data model to the internal data model,

with the additional step that requires routing the data from
the application to the third-party library and back.

An important consideration is how a developer can
determine when the data needs to be processed before it
can be used in the next stage. While intuitively one
understands the statement “if a polygon has more than
three sides, then it needs to be triangulated,”
implementing such a statement in software is much more
complex due to variations in conditions, detecting those
conditions, and the amount of low-level detail that a
programming language requires. In general, for a given
data set, the data of interest can be

• Present in a directly usable form (e.g., three-
sided polygons)

• Present but in an unusable form that can be
derived into a usable form (e.g., triangulation of
polygons)

• Present but in an unusable form that cannot be
(relatively easily) derived into a usable form
(e.g., concave polygons that the triangulation
algorithm cannot handle)

• Or be absent entirely (e.g., no surface data exists)

The ability to identify these conditions is critical to
successful execution of applications that need to deal with
environmental data. While an application may not be able
to handle some of these situations, being able to identify
them and generate an appropriate log of the condition can
be extremely useful, both during the design phase and
during the data processing.

If data is present but not in the required form, it can be
passed to independent processing components that know
how to reformat or transform the data. What is needed in
this situation is a mechanism that (1) lets the developer
recognize when the data is not in the appropriate form,
and (2) helps the developer identify the algorithm(s) that
can transform the data. It is important to note that
identifying and invoking the algorithm in step (2) requires
a mechanism for specifying and declaring its
functionality; for example, by expressing that if the data is
in form X, the algorithm can transform it to form Y. For
step (1), the developer can benefit from a similar
mechanism in the data processing pipeline that can
identify the situations when the data can proceed along
the pipeline and when it has to be transformed.

Because of the complexity and cost in creating software
that can process any source of environmental data, most
developers restrict their software to process only a limited
set of source data (e.g., only DTED Level 1 or only non-
compressed 16-bit GeoTIFF for terrain elevation).
However, if a formal mechanism exists that can recognize
those data organizations that the application cannot

process directly, along with a mechanism to identify an
algorithm that knows how to transform the data, then a
more flexible and capable data processing approach can
be created.

2.5 SEDRIS Approach to Environmental Data

The SEDRIS [11] approach to the representation and
exchange of environmental data allows producers to
describe their data in a way that is natural to them yet
unambiguous to the consumers of the data. With this
approach, standardized technologies have been developed
that apply across all environmental domains and
applications (e.g., ocean, terrain, urban, atmosphere,
sensors, and space).

The STF is a binary file format for the encoding and
transmittal of SEDRIS data. The format is optimized for
file size and for random access of any part of the data
content. A logical unit of data is called a transmittal and
typically consists of two or more files. One file (with
extension “.stf”) acts as the root of the transmittal and
contains information about the transmittal. The other
subordinate files (also with extension “.stf” but numbered
sequentially) store the actual data content.

The data is organized in a hierarchy of objects, where
each object is an instance of a class from the SEDRIS
DRM. There are a little over 300 DRM classes that cover
the gamut of environmental domains and the relationships
between environmental entities. For example, the root of
the hierarchy is an instance of the DRM class
Transmittal Root, which may be composed of instances
of other DRM classes, such as Image Library, Model
Library, and Environment Root. In turn, a Model

Library object, for example, is composed of Model
objects, which within their own hierarchies may be
composed of such primitives as polygons, vertices, colors,
etc. Associations between the DRM classes allow the
creation of explicit relationships between object instances.

To allow for representational polymorphism, the DRM
factors the common representations of the environmental
objects, but does not include individual classes for such
objects (such as trees, buildings, etc.). Instead it allows
the identification of those representations by relying on
the EDCS [9]. For example, the EDCS includes entries
and corresponding definitions for a large array of
environmental concepts and attributes. The label and/or
code of these entries can then be attached to a Model to
identify it as that environmental object. An online registry
[12] allows users to browse and search all available
EDCS concepts and also submit new concepts for
registration.

The SRM [13] provides the framework required for the
specification of spatial positions in a variety of Spatial
Reference Frames (SRFs). An associated API allows for
the conversion of coordinate values between different
SRFs. Supported reference frames, datums, and
coordinate systems span a wide range, which include all
of the common reference frames such as Geodetic,
Geocentric, Universal Transverse Mercator (UTM), and
Polar Stereographic, along with other representations such
as Military Grid Reference System (MGRS).

The SEDRIS API utilizes the DRM, EDCS, and SRM
technology components to create instances of DRM
classes and their relationships that can represent a wide
range of environmental data. This DRM hierarchy can
then be stored in an STF transmittal for interchange with
other applications or subsequent updates and modification
using the same API. In effect, the SEDRIS API is the file
format library for the STF transmittal file format. All
SEDRIS technology components are available as open
source software development kits (SDKs), have been
standardized through ISO/IEC (the International
Organization for Standardization and the International
Electrotechnical Commission), and are freely available
for download [14].

A particularly relevant technology is the XML-based
Transmittal Content Requirements Specification
(XTCRS) [15]. The XTCRS is a formal language that is
used to describe the content requirements of
environmental data sets. The requirements specified in
this language can be used to validate a SEDRIS
transmittal (or a part of it) and verify that the constructs
and the content of the transmittal meet the specific
criteria. This data content specification technology forms
the basis for the approach to environmental data
processing and conversion described in the following
section.

In addition to standards and SDKs, a set of tools for
creating, viewing, and editing environmental data in the
STF format, along with tools for converting data in
several file formats to and from STF are also available
[16]. The conversion tools allow a developer to write
software based on the SEDRIS data model and then, by
converting the source data to STF files, to read the source
data without having to learn the data models of many
other file formats.

3. An Innovative and Unified Approach

Instead of developing new software that maps data
between different data models, the innovative approach
discussed in this paper utilizes SEDRIS technologies to
provide a unified framework for the processing and
conversion of environmental data. In particular, the

framework provides a clear, consistent, and flexible
approach for specifying the input and output requirements
of a system’s components and algorithms.

3.1 Processing Environmental Data

When processing environmental data, a reasonable first
step is to determine whether or not the data is in a form
that can be easily digested. If the input data can be
expected in one of several representations (for example,
when numerical values are represented as integers versus
floats, or when a surface is represented as a grid of regular
points vs. polygons), the developer is faced with several
choices. These include, designing the software to

• Be flexible enough to handle all possible
representations

• Handle a limited set of representations and reject
others

• Or handle a limited set of representations, but
pipe the other representations through processing
components that can map these representations
into the set the developer’s software can handle

The first approach is usually the preferred approach, but
various practical limitations may not make this feasible.
These may include project resource constraints (such as
budget and schedule) or the required expertise for
handling the more complex or unfamiliar representations.
Hence, in order to quickly develop “working” software,
developers might choose the second approach and hope
that when more expertise/resources are available the
additional flexibility will be added (i.e., converge to the
first option). Unfortunately, often such software is not
designed in a way that is easy to adapt to handling new
representations; therefore, the software becomes brittle
and more difficult to maintain after each modification.

To realize the last approach, the developer will need to
design the software to recognize when the data is in a
representation that can be handled, and if not, to be able
to invoke a proper component that can map the
representation into one the developer’s software can
handle.

As noted earlier, the SEDRIS XTCRS, and its associated
SDK, provides the means for software to determine
whether a SEDRIS transmittal (or a part of the transmittal
hierarchy) satisfies a set of requirements. Therefore, the
processing component can use an appropriate XTCRS to
evaluate the input data stream and determine if there is
data that matches the representations that can be handled
by the developer’s software. When the input data does not
match one of the representations that can be handled, the
software can then query a set of available processing
components and invoke the appropriate one to convert the

data into a different representation that the software can
handle.

The process for querying those components that can
handle other/unfamiliar representations can be
accomplished using the same methodology. That is, each
processing component can be described by both an input
and an output XTCRS that the software can query and
validate the input data against. Obviously the output
XTCRS is one that is compatible with the representation
that the developer’s software can handle, but by
specifying the input and output requirements, it is
possible to create a catalog of well-defined processing
components.

This ability to create a catalog of environmental data
processing components using a comprehensive and
unambiguous language (XTCRS) can be an effective
approach to the reuse of these components. In addition, by
encapsulating and cataloging the various algorithms and
components, the developer’s expertise can be focused on
specific areas of the processing of environmental data
without the need to learn and re-engineer a monolithic
data processing pipeline.

Another advantage of using the SEDRIS DRM as an
internal data model is the use of the file system to
temporarily store (potentially large) environmental data
fragments. For example, if the processing pipeline
requires references to multiple sources of data that need to
be conflated into an integrated data set, then the SEDRIS
API can provide an efficient mechanism for managing the
data. This is because the SEDRIS API has been designed
for high performance access by caching frequently used
data and for memory efficiency by automatically writing
to the file system (and releasing resources for) the data
that is no longer being referenced.

When an application that processes environmental data
uses the SEDRIS DRM as its internal data model, then
each of the environmental data processing components
can be described by a template composed of

• An XTCRS describing the input data
requirements

• An XTCRS describing the output data
organization

• A set of variable name/value pairs to be applied
to the output XTCRS to guide/restrict the
processing algorithm

An example of this template is shown in Figure 1. This
template was used to describe the Polygonal Terrain
to Gridded Terrain processing component of the
STF to Compact Terrain Database (CTDB) Converter.
This processing component is a complex algorithm that

uses a Fast Fourier Transform to identify the optimal grid
spacing of the vertex spatial pattern. By describing the
input requirements of this algorithm, we were able to
reuse this processing component in the STF to DTED
Converter. The STF to DTED Converter was thus
augmented with XTCRS descriptions of the different
input data organizations it can handle. If the input data
does not contain a grid but matches the organization
expected by the Polygonal Terrain to Gridded
Terrain algorithm, it is forwarded to this component so
that its output can then be routed back for conversion to
the DTED format.

Figure 1 ‐ Sample processing component template 

3.2 Converting environmental data

Most environmental data file formats have been
developed to address the needs of a particular application
area. In some cases, there are overlaps between
application areas or, due to technological innovations,
new requirements arise that trigger the development of
additional file formats. For example, both the OpenFlight
and COLLADA formats store 3D graphics information,
but OpenFlight has an emphasis on 3D visualization while
COLLADA is geared toward the interchange of three-
dimensional (3D) models between 3D modeling tools.

Some file formats allow for extensions that allow them to
be used beyond their original intent. For example, the
Tagged Image File Format (TIFF) was designed to store
raster images such as logos, scanned documents, and
pictures. However, due to the format’s popularity and
flexibility, the GeoTIFF specification was developed to
allow the Geographic Information System (GIS)
community to store geographic information such as aerial
imagery and elevation models. GeoTIFF is not a separate
file format (from TIFF), but rather it adds a set of

specifications that describe the rules for storing those
specific raster data types in a TIFF file. In particular, the
specification defines a set of tags used to geo-reference
the raster data stored in the file.

While the variety of file formats is not a problem in itself
(since it is driven by the requirements of specific
communities), it does create significant and complex
problems when the data from different file formats needs
to be assembled into a coherent data set. As described
earlier, the libraries used to access the data in these file
formats define their own data models. However, because
the scope of each file format is limited, the respective data
models of these libraries are not suitable for directly
creating relationships between the data elements in the
different formats. Hence, the application designer is faced
with the task of creating an additional data model (and
likely a related custom file format) to support the
establishment and storage of these relationships.

An alternative to creating these custom data models is to
use a data model that not only can represent the data
stored in the different file formats, but also allows for the
specification of relationships between these data
elements. This is the approach taken in SEDRIS. The
SEDRIS DRM has the capability to represent the data
contained in popular environmental data formats while
also providing the relationships between the DRM objects
that are used to represent the data in those formats. For
example, in the DRM, a point feature can have an
association relationship to the geometry description of
that same feature; or an elevation grid representing a
surface can have an association to the polygonal
representation of that surface.

While having a comprehensive data model such as the
DRM is critical, it would not be sufficient without data in
this data model. Tools to convert between common
environmental data file formats to and from the STF file
format have been developed over the years, most of which
are available freely from the SEDRIS web site. Some of
the popular file formats currently supported or in the
works include CTDB, DTED, GeoTIFF, Gridded Binary
(GRIB), OpenFlight, Shapefile, and Vector Product
Format (VPF).

The conversion of environmental data from a file format
with a limited data model into the SEDRIS DRM is
generally a straightforward task. However, the reverse
(the “STF to other format” side of the equation) is not
always as easy. Part of the complication is due to the
polymorphic representations that the DRM allows. Since
most of the “other format to STF” converters are written
by different developers and also represent that specific
format’s unique data model, the DRM hierarchy and
constructs that are most appropriate to the task or are

familiar to the developer are used. Therefore, the design
of a converter that can accept any STF as input and
converts it to another format is potentially faced with a
variety of DRM organizations at its input.

As described earlier, often when developers are faced
with data that may be available in a variety of
representations, they generally design for the most
common or preferred representations (at least initially).
The developers of the “STF to other format” converters
are no different and have sometimes followed a similar
approach. Therefore, some of these converters are
designed to handle specific representations and are unable
to deal with all the DRM organizations that may be
generated by the other converters.

To address the limitations in some of the “STF to other
format” converters, we use the same technique described
earlier for processing environmental data. That is,
templates for describing the input requirements of these
converters are being developed, and mechanisms are
being added to the converters to search for processing
components when the data is not in a form that can be
processed directly. In this manner, the converters can be
more explicit about the organization of data they support,
and suitable processing algorithms can be developed to
increase their flexibility.

Another benefit of describing the input requirements of
the conversion tools is that developers producing SEDRIS
transmittals in the STF format can use these requirements
to automatically generate compatible DRM organizations.
This in turn increases the availability of data in a common
data model and organization that can be converted into
other environmental data file formats.

4. Conclusion and Future Work

The unified approach described in this paper provides a
framework to not only describe the environmental data,
but also the requirements of the algorithms that work on
such data. Using the SEDRIS DRM as a common data
model allows for a reduction of the problem space
produced by the variety of data models exposed by the
different file format libraries.

A benefit of the technique is that developers can create
components specific to their level of expertise in a
particular aspect of environmental data processing, and
these components can be clearly described for reuse by
other developers. Using these techniques, we were able to
reuse processing algorithms and components currently
used in the SEDRIS file format converters. In addition, by
clearly describing the data organizations handled by the
processing algorithms used in these converters, the

understanding of their limitations is also increased so that
they can be further improved.

Future work will formalize the specification of
environmental data processing components and provide
the means for the creation of a searchable catalog of
algorithms and processing components matching specific
input/output requirements.

5. References

[1] DTED (Digital Terrain Elevation Data)
Specification,
http://dds.cr.usgs.gov/srtm/version2_1/Documen
tation/MIL-PDF-89020B.pdf

[2] GeoTIFF Specification,
http://www.remotesensing.org/geotiff/spec/conte
nts.html

[3] XML (Extensible Markup Language),
http://www.w3.org/TR/REC-xml/

[4] GML (Geography Markup Language) ISO
19136:2007,
http://www.iso.org/iso/iso_catalogue/catalogue_t
c/catalogue_detail.htm?csnumber=32554

[5] COLLADA, http://collada.org
[6] OpenFlight Specification,

http://www.presagis.com/products_services/stan
dards/openflight

[7] ESRI Shapefile Technical Description,
http://www.esri.com/library/whitepapers/pdfs/sh
apefile.pdf

[8] SEDRIS Transmittal Format Binary Encoding,
http://www.iso.org/iso/iso_catalogue/catalogue_t
c/catalogue_detail.htm?csnumber=39412

[9] EDCS (Environmental Data Coding
Specification),
http://www.iso.org/iso/iso_catalogue/catalogue_t
c/catalogue_detail.htm?csnumber=30810

[10] NFDD (NSG Feature Data Dictionary),
http://www.gwg.nga.mil/documents/asfe/NFDD
_v1.8.pdf

[11] SEDRIS, http://www.sedris.org
[12] EDCS Registry, http://edcsreg.sedris.org
[13] SRM (Spatial Reference Model),

http://www.iso.org/iso/iso_catalogue/catalogue_t
c/catalogue_detail.htm?csnumber=54166

[14] SEDRIS Standards, http://standards.sedris.org
[15] J. Campos, G. Hull, F. Mamaghani: “TCRS – A

Methodology and Tool Set for Specifying Data
Content”, Spring SIW 2004.

[16] SEDRIS Tools, http://tools.sedris.org
[17] J. Campos: “How to Produce & Consume

Transmittals”, SEDRIS Technology Conference,
January 2004.

Author Biographies

WILLIAM W. FERRELL is a software developer at
Abamis IT Solutions. Mr. Ferrell has developed software
for a variety of application domains, including simulation
systems, GIS data analysis, hardware control systems, and
mobile devices. Mr. Ferrell is a member of the SEDRIS
core team, where he is a key maintainer and developer of
the SEDRIS SDKs and tools. He is a member of IEEE
and Association for Computing Machinery (ACM).

WARREN MACCHI is the president of Abamis IT
Solutions, an Orlando, Fla., corporation that specializes in
environmental and geographical information data
analysis, conversion, and modeling services. Mr. Macchi
has been developing software for modeling and
simulation, 3D visualization, and environmental data
processing for almost 15 years. He is also a core team
member of the SEDRIS program, where he contributes in
the development of the SEDRIS standards and software
development kits. Mr. Macchi is a member of IEEE,
ACM, and Simulation Interoperability Standards
Organization (SISO), and holds a B.S. and M.S. in
computer science from the University of Central Florida.

ANTHONY A. BARRESI is a developer and creative
designer at Abamis IT Solutions. Mr. Barresi develops
software and user interfaces for interactive systems used
in desktop and mobile applications. He also develops 3D
models and virtual environments to be used in simulation
and gaming and entertainment systems. Mr. Barresi holds
a B.A. in digital media Internet and interactive systems
from the University of Central Florida.

FARID MAMAGHANI has worked in the field of
interactive networked simulation since 1984. He is one of
the original designers of the Defense Advanced Research
Projects Agency (DARPA) Simulation Networking
(SIMNET) computer image generation system and, over
the years, has worked as systems engineer and project
manager on a variety of networked simulation projects.
He is one of the people responsible for the establishment
of the SEDRIS project, and provides management
oversight and technical direction for the project. He is
also involved in a number of other simulation and training
programs and has extensive background in the design,
development, and management of large software and
simulation projects.

